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In a recent article, Odlyzko showed that under certain idealized circumstances,
a small increase in data storage capability can lead to a dramatic increase in the
rate at which data can be communicated reliably. In this article a detailed investi-
gation is made of the circumstances under which the maximum possible rate

increase will occur.

|. Introduction

In a recent article, Odlyzko (Ref. 1) showed that under
certain idealized circumstances, a small increase in data
storage capability can lead to a dramatic increase in the
rate at which data can be communicated reliably. In this
article we will investigate in detail the circumstances
under which the maximum possible rate increase will
occur.

Let X be a set, whose elements are to be regarded as the
possible outcomes of some experiment. Let § be a collec-
tion of subsets of X; we assume that when a sample xe X
is obtained, the experimenter is satisfied in knowing only
some A €S such that xe A. The sets A of S are therefore
sometimes called the subsets of allowed uncertainty. As
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explained in detail in (Ref. 1), if ny denotes the minimum
number of sets of the form A, X A, X - - - X Ay needed
to cover X X - - - X X (N copies of X), then if the data
handling system can store N samples prior to transmission
the data rate is proportional to N /log ny. Odlyzko showed
that ny can sometimes be as small as Nn, — N; i.e., the best
possible increase in data rate is linear in the amount of
storage. This is quite remarkable since for most systems
N/log ny is a constant, or nearly so, independent of N. Our
goal here is to investigate the circumstances under which
ny = Nn, — N, and some related questions.

Let S be a collection of subsets of a set X such that their
union is X. Define ¢ (X; S), the covering number of X with
respect to S, to be the minimal number of elements of S
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whose union is X, if this number exists, and infinity if no
finite subcollection of S covers X. If S,, - - -, Sy are col-
lections of subsets of X,, - - - , Xy respectively, define a
collection S; X - - - X Sy of subsets of the Cartesian prod-
uct X; X -+ - X Xy by

sl><"'><SN:{A1><"'XANIAiESi, i:l’...,N}

We will restrict ourselves to the case in which all the
¢ (Xi; S;) are finite, since otherwise

C(X1>< st XXN;Slx e XSN):w

Odlyzko (Ref. 1) obtained an upper bound
N
c(XiX XXy Si X - XSy) =Tl c(Xi;8:) (1)

and a lower bound

N

e(Xy X o X Xys S X - XS0 = 3 [e(Xi380) — 1] +1
@)

The surprising result is that equality can be attained in
Eq. 2, and in Ref. 1 Odlyzko gives a construction for it.
In Subsection II of this paper, we will give an equivalent
version of the problem in (0, 1)-matrix terms. In Subsec-
tion I11, we will give a necessary and sufficient condition
that the lower bound of Eq. 2 is obtained by a given par-
tition. In particular, we will show that the Odlyzko con-
structions give essentially the only case that achieves the
lower bound. In Subsection IV, we will give some condi-
tions on when the upper bound of Eq. 1 is obtained.

11. Formulation of Problem as a (0,1)-Matrix
Problem

A (0, 1)-matrix of size r by s is a matrix with 7 rows and
s columns, in which all the entries are either 0 or 1. We
now associate a (0, 1)-matrix with a set X and S, a collec-

tion of subsets of X.
Let X = {a,, * - - S={A, -

,ar), - ,A;}. Define

bij =

0 otherwise

%1 ifa;eA; %

Then B = {b;;} is a (0, 1)-matrix of size r X s, and it rep-
resents the relationships between X and S.
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We will call the minimum number of columns of a
(0, 1)-matrix that has at least one 1 in each row the I-width
of the matrix. So, ¢ (X; S) is just the 1-width of the matrix B
representing X and S. We write € (B) for the 1-width of B.

If B, C are (0, 1)-matrices, let

The Cartesian (tensor) product is

b,,C - - - b,,C
BXC=

b,C - - - b,.C

where b;;C denotes multiplying all the entries of C by

b;;. The matrix B X C is obtained by placing these blocks
of matrices side by side.

It can be easily shown that if B represents X, and S;,
and D represents X, and S,, then the product B X D rep-
resents the product S, X S,. Therefore

€(BX D) =c(X, X X;; $;: X8,)

The results in Subsection I are now translated to

€BX - X BT e(B) ®
eB.X - - XB)>S (e(B)—D+1 (4

1=1

From now on, we will work with the matrix version of
the problem, which should be easier to visualize.

l11. Conditions for Achievement of Lower Bound

We start this section off with some elementary observa-
tions about the 1-width of a (0, 1)-matrix.

A column (row) ¢, is said to cover another column (row)
¢, if whenever there is a 1 in the column (row) of ¢,, there
is a 1 in the corresponding position of c;.
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Property 1

If a row ¢, of a (0,1)-matrix A covers another row c,
then the row ¢, can be removed without affecting € (A).

Proof:

In any choice of columns of A which gives a 1 in each
row, one of the columns must have a 1 in row ¢,. Since
row ¢. is covered by row ¢,, a 1 must appear in row ¢, in
the same column,

Property 2

If a column ¢, of a (0, 1)-matrix A covers another col-
umn c., then ¢, can be removed without affecting e (A).

Proof:

In any choice of columns which includes ¢,, we could
do as well or better by replacing column ¢, with c,.

Note that the two processes above can be applied re-
peatedly to reduce the size of the matrix, which would
make it easier to find the 1-width.

Given two integers €, n with n==¢ > 0, Odlyzko’s con-
struction gives a matrix of size

" X
n—e-+1 n

with constant row sums (n — € + 1), and the

(n—2+1>

rows represent all the possible ways of putting (n — e+ 1)
1s in n positions. We call such a matrix one of Odlyzko’s
type with parameters n and e.

Example:

O OO O b | e e
Ot ek = | © O O = =
e | O bl ok | O ek = O D b
bt D= DO = O
| = O == O - OO
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Theorem 1

The l-width of a (0,1)-matrix of Odlyzko type is €.
Moreover, any choices of € columns will have at least one
1 in each row.

Proof:

In every row, the row sum is (n — € + 1), therefore
there are only (¢ — 1) 0’s. So, in any choice of € columns,
it can at most contain (e — 1) O’s in this row. Hence € col-
umns are enough to give at least one 1 in each row. On the
other hand, if we take (¢ — 1) columns, there is a row with
all its (e — 1) O’s in these columns. Hence (¢ — 1) columns
is not enough. Thus, the 1-width of the matrix is €.

Odlyzko has proved the following theorem.
Theorem 2

If B, -+, By are (0, 1)-matrices with 1-width €, -, €y,
then

XB)>S (—D+1 (5

i=1

6(31X

Proof: (See Ref. 1.)

We now investigate the conditions when equality in
Eq. (5) is attained.

Theorem 3

Let €, - - -, €y be positive integers, and let By, - - -, By
be (0, 1)-matrices with 1-width €, - - - , ey respectively.
The necessary and sufficient condition for

N
€(B,X - XBy)= 2 (&,—1)+1=n
i=1

is that for every B, there exists a submatrix of n columns
which reduces, by repeated applications of property 1, to
a submatrix of the Odlyzko type with parameters n and ;.

Proof:

Assume first that € (B, X - - - X By) = n.

We focus our proof on matrix By, the others follow in a
similar manner,
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Let
b - by
B, =
by -+ by
We can write B, X * -+ X By as
B X " XBy=
by (BoX - -+ X By) - by (BaX - -+ X By)
_b,](BzX':-XBN) “r by (B X -+ - X By) |
We will call
[bix(B; X -+ XBy) '+ bis(B:X + -+ XBy)]
the i-th row block and
~ byj (B X - -+ X By) ]
| b, (B X - © X By) |
the j-th column block of B; X - - - X By.

We are given a set of n columns such that there is a
1 in each row. We pick n columns of B, in the following
manner. For every column in the set, we locate the column
block that contains it. If the column is contained in block
i, say, we take column i of B,. Thus we can pick n columns,
but at this point, there may be repeated columns among
them.

We now prove that for the n columns of B,, the row
sums are at least n — ¢, + 1. If there is a row, say row 1,
with row sum less than n — ¢ + 1, say o, we take the «
columns which have a 1 in row 1. This in turn will give us
a columns of the original n columns which gave us the
l-width of B, X - - - X By. We focus our attention to the
first row block. These « columns give us a 1 in each of the
rows of the first row block. The same « columns will give
us a 1 in each row for B, X - - - X By, if we only take
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the first row block as B, X - - - X By copies many times
(as many as the first row sum of B,). Thus we have

XBy)Ea<n—e+1= E (e, —1)+1

i=2

€(Bz><

contradicting Theorem 2. Therefore we have proved that
the row sums of the chosen in columns of B, are all greater
than or equal to n — €, + 1. In other words, there are at
most (e, — 1) zeros in each row.

We will now show that in these n columns of B; and
for every possible choice of (e, — 1) positions out of n,
there is a row with (¢, — 1) zeros in these (e, — 1) places.
If this is not true, there will be a choice of (&, — 1) col-
umns with at least one 1 in each row. Then, the 1-width
of B, is less than €, a contradiction. This fact, by the way,
also proves that there are no repeated columns among the
n columns.

So, we have now n columns of B,, and

n
n—e +1

rows of these columns with (e, — 1) zeros in all the possible

(€1i1>:<n—z+l>

positions. Let us call this submatrix B’. This is a submatrix
of Odlyzko type.

In those n columns, if there were any other rows not
yet contained in B’, the row sum must still be at least
(n — & + 1). Since we have all the possible

n
n—e +1

choices already, the extra row will cover one of the

n
n—el+1>

rows. Thus by property 1, it can be removed without
affecting the 1-width of the matrix,

Thus, we have proved half of the theorem.

We now assume that B,, - - - , By contains a submatrix
satisfying the conditions in the statement of the theorem.
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We first show that the rows removed will not affect the 1-width of the product. Let us assume that the n columns are the

first n columns of B,. As before, we write
b (B, X + -+ XBy) -

BIX XBA:

b, (B, X - - - X By) -

Say, if row r covers row 1 in B,, then the columns that
cover the first row block will cover the r-th row block in
Eq. (6). Hence it is enough just to consider the product
of the submatrices of Odlyzko type. He proved that the
1-width of the product matrix is n. Anyway, if we write
the n columns of B; as {B;;, - - - , Bi,}, it is not difficult
to prove that the n columns given by

N

HBil; "‘;HBin

i=1 i=1
will have at least one 1 in each row.

QED.

IV. Conditions for Achievement of Upper Bound

We will now study the conditions when the upper
bound

€(AX B) =¢€(A) X €(B) (7
is obtained.
Definition:
A (0, 1)-matrix A of size 7 by s is said to satisfy the mini-

mal condition if its 1-width is also the value of the follow-
ing linear program:

minimize
S
subject to the conditions
1
AY >
1
8
0 (8)
Y>>
0
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"bm(BZX

XBN)"'bM(BZX“'XBN)
(6)
"bm(BZX---XBN)---b,s(BZX'-'><BN)
where Y = (y,, * * + ,y:)? is a column vector.

This definition is not as strange as it first seems. The
1-width of A is just the same linear program with the
extra condition that components of Y are either 0 or 1.
The minimal condition just states that among the solu-
tions to the linear program, one can find a solution with
the components of Y either a 0 or 1.

The following gives a sufficient condition for Eq. (7)
to be true,

Theorem 4

If a (0, 1) matrix A satisfies the minimal condition then
€(A X B) = €(A) X €(B) for any (0, 1)-matrix B.

Proof:
Let
QG aa
A=
an Qe
and we write
anB - - - a,B
AXB= '
4B 0B

We will define the i-th column block and j-th row block
in the same way as before.

Suppose we have a set of columns of A X B that gives
the 1-width, and suppose that x; columns come from the
i-th column block. Furthermore, assume that

8
> x

i=1

which is the 1-width of A X B, is smaller than € (A) X ¢ (B).

113



Consider, say, the first row of A, First of all, we will state the following lemma. The
) result is given in Ref. 3. It is also not difficult to construct
S agx; the matrix.

i=1

gives the number of columns of B picked up in the first Lemma

row block. This number must be greater than the 1-width

Given positive integers n and ¢ with n > ¢, a symmetric
of B. Hence we have p g > y

(0, 1)-matrix E exists with the following properties:

x.‘ € (_B> (1) The order of E is at least n.
A = . (2) E has Os in the main diagonal,
.. ¢(B) (3) E has constant line sum ¢
or (4) E has no repeated rows.
Proof (of Theorem 5):
We need only construct a matrix B such that
€(A X B) < e(A) X €(B)
or Since A does not satisfy the minimal condition, there
exists a vector
X1
A
Xs
Since €{A X B) < €(A) X €(B), we have
satisfying Eq. (8) such that
> x; < €e(A) X e(B) \
= x; < €(A 9
Thes Zrse® ©
1 u The vector
€(B) Zx¢-<e(A) X
i=1 .
which implies that A does not satisfy the minimal con-
dition.
QED. s
In a way, the converse of the above theorem is true. can be obtained by the simplex method in linear program-
ming. All the x;’s will be rational numbers. Hence there
Theorem 5 exists an integer k such that kx; is an integer for all 4, and
If a (0, 1)-matrix A does not satisfy the minimal condi- 8
tions, then there exists a (0, 1)-matrix B such that g kxi < ke(A) (10)
€(A X B) <€(A) X e(B) We will construct B such that € (B) =k, and
Moreover, B can be chosen so that it is symmetric, square, €(A X B) = ﬁ

and has 1’s in its main diagonal.
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( = N, say). It will have the properties promised by the
theorem.

We first construct a (0, 1)-matrix E as promised in the
lemma, with n = N and line sum ¢ = k — 1. The order of
E will be M. In fact we can choose M as big as we like as
long as M =n, We will take M > 3k — 4 as well as = N.

Now we take (J — E). This is again a symmetric matrix
with U’s in the main diagonal and (k — 1) zeros on each
row. Moreover, no two of the rows will have all its zeros
in the same (k — 1) places. So, the matrix (J — E) is just a
submatrix of an Odlyzko matrix with parameters M and
k. We now construct B as

()

where P is the remaining rows of the Odlyzko matrix.
Clearly B is a symmetric and square matrix, The first M
columns of B has 1-width k. So,

e(B) <k

Suppose the 1-width is less than k, then, there are (k—1)
columns that have one 1 in each row. At most (k — 2} of
these columns can be in the first M, or else it contradicts
the fact that the 1-width of the first M columns is k. Con-
sidering the first M columns only, we will have at least
M — (k — 2) rows with no 1’s in them. These rows had
better be covered by the remaining columns. In the sub-
matrix (J — E), there are (k — 1) zeros in each column. So
there are at least M — (k—2) —(k—1)=M — (2k — 3)
rows that have no 1’s in the part P. We can at most cover
up (k — 1) rows with columns from I. So, if we choose M
so large that

M —(2k—3)> (k—1)
or

M>3k—4

we will have a contradiction. This explains the choice
of M.

The last thing left to be proved is that
e(AXB)= 3 kx,
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To establish this, we only need to consider A X B’ where
B’ is the first M columns of B. We write

a.B’ - a,B
AXB =

a.B’ - - a,B

We now pick X kx; columns in the following manner:

column  number of
block columns starting at

number picked
1 kX1 1
2 kx2 kx, +1
3 kx3 k(x, +x) +1
s kxXs kg +x.+ -+ - +x,)+1

X1

Since the vector satisfies Eq. (7), we have

X
% k
Y N
. K

This means we have picked at least k different columns
of B’ in each row block of A X B’. Thus the 1-width of
A X B’ is at most

8
2 kx;
i=1

In turn, it means

€(AXB) =S kx:

QED.

V. Acknowledgments

I would like to thank R. J. McEliece for proposing these
problems and for his help. I would also like to thank
H. J. Ryser for many stimulating conversations.

115



References

1. Odlyzko, A. M., “Data Storage and Data Compression,” in The Deep Space
Network Progress Report, Technical Report 32-1526, Vol. VI, pp. 112-117, Jet
Propulsion Laboratory, Pasadena, Calif., Dec. 15, 1971.

2. Ryser, H. J., Combinatorial Mathematics, Wiley, New York, 1963.

3. Fulkerson, D. R., Hoffman, A. J., and McAndrew, M. H., “Some Properties of
Graphs with Multiple Edges,” Canadian J. Math., Vol. 17, pp. 166-177, 1965.

116 JPL TECHNICAL REPORT 32-1526, VOL. XIV



